Evolving Neuromodulated Controllers in Variable Environments

Chloe M. Barnes, Anikó Ekárt, Kai Olav Ellefsen, Kyrre Glette, Peter R. Lewis, Jim Tørresen: Evolving Neuromodulated Controllers in Variable Environments. In: Proceedings of the IEEE 2nd International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 164–169, IEEE, 2021.

Abstract

Modern technical systems are increasingly composed of heterogeneous components that are situated in variable environments. In nature, organisms can temporarily adapt their behaviour to novel stimuli with behavioural plasticity; this can be achieved with neuromodulation, a biological process that modulates synaptic activity in the brain. We explore how neuromodulation affects goal-achievement in evolved neural controllers for artificial agents in variable environments. As variability can arise from the actions of others, we show that the benefit of plasticity can increase with variability, as agents can temporarily change their phenotype within their lifetime. Further, we show that cooperation can emerge between plastic agents that cannot perceive one another in highly variable environments.


BibTeX (Download)

@inproceedings{Barnes2021EvolvingEnvironments,
title = {Evolving Neuromodulated Controllers in Variable Environments},
author = {Chloe M. Barnes and Anikó Ekárt and Kai Olav Ellefsen and Kyrre Glette and Peter R. Lewis and Jim Tørresen},
doi = {10.1109/ACSOS52086.2021.00037},
year  = {2021},
date = {2021-09-01},
urldate = {2021-01-01},
booktitle = {Proceedings of the IEEE 2nd International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)},
pages = {164--169},
publisher = {IEEE},
abstract = {Modern technical systems are increasingly composed of heterogeneous components that are situated in variable environments. In nature, organisms can temporarily adapt their behaviour to novel stimuli with behavioural plasticity; this can be achieved with neuromodulation, a biological process that modulates synaptic activity in the brain. We explore how neuromodulation affects goal-achievement in evolved neural controllers for artificial agents in variable environments. As variability can arise from the actions of others, we show that the benefit of plasticity can increase with variability, as agents can temporarily change their phenotype within their lifetime. Further, we show that cooperation can emerge between plastic agents that cannot perceive one another in highly variable environments.},
keywords = {Agent-Based Systems, ANNs, Artificial Life, Behavioural Plasticity, Cooperation, Environmental Variability, Evolutionary Algorithms, Neuroevolution, Neuromodulation, River Crossing},
pubstate = {published},
tppubtype = {inproceedings}
}